Characterization And Control Of Aeroengine Combustion Instability:

Pratt & Whitney and NASA Experience

Clarence Chang – Combustion Branch

Clarence.T.Chang@nasa.gov 216-433-8561

John DeLaat – Controls and Dynamics Branch

<u>jdelaat@nasa.gov</u> 216-433-3744

Acknowledgements

- NASA (Combustor & feed system modeling, control methodologies, testing) Dr. Daniel Paxson, Joseph Saus, George Kopasakis, Dzu K. Le, Daniel Vrnak
- PW/UTRC (Platform Development and testing) Dr. Jeffery Lovett, Dr. Jeffery Cohen, Karen Teerlinck, Dr. Torger Anderson, Prabir Barooah, et al
- GaTech (Actuator development) Dr. Ben Zinn, Dr. Yedidia Neumeier et al
- VaTech (Control methods) Wil Saunders, et al
- PSU (Injector dynamics simulation) Dr. Vigor Yang

Outline

- NASA's Active Combustion Control interests
- Motivation: Ultra-low emissions, lean burning, MultiPoint-Lean Direct Injection (LDI) combustors
 - More susceptible to instability
- Our approach for dealing with combustor thermo-acoustic instabilities
- Outcome of our recent instability control experiments
- Technology transfer, future plans

NASA Active Combustion Controls

Combustion Instability Control

objective: actively suppress thermo-acoustic pressure oscillations

Pattern Factor Control

objective: actively reduce combustor pattern factor

Low-Emission Enabling Control

objective: actively reduce

NOx production

Intelligent combustor with extremely low emissions throughout the engine operating envelope

Effect of Fuel Injection Schemes on NOx Emission

Advantages of Multi-Point Lean Direct Injection (MP-LDI)

Lean & uniform front end

- Lower front-end temperature
- Little CO produced
- Shorter combustor
- Short residence time
- Reduced shaft length
- Low NOx produced
- Low smoke

Direct injection

- No flash back
- Operate at high temp.

Multi-point

- Short mixing time
- Spatial fuel shifting
- Low-power piloting
 - Hot-streak elimination
- Temporal fuel modulation
- T-A instability control

Issues that Affect Combustor Instability / Acoustics

- 1. Well-defined acoustic boundary conditions
- 3. Recirculation vortex provides flame-holding

5. Multiple temperature zones

- 2. Perturbations from fuel-nozzle turbulence
- 4. Liner film-cooling provides damping
- 6. Φ' interaction with P'

Why is Lean-Burning Combustor More Sensitive?

1. Higher-performance fuel injectors: more turbulence

2. Reduced film cooling: reduced damping

- 3. More uniform temperature and composition
- 4. No dilution holes: reduced flame-holding

How does heat release interact with pressure?

Р'⇒Ф': Feed system impedance mismatch

fuel	air
40 psi	4 psi ~sqrt(4)
-1 psi	-1 psi
	1/4 ~sqrt(5/4)
	40 psi ~sqrt(40)

 $\Phi'/\Phi \sim (\text{mdot'/mdot})_{\text{fuel}}/(\text{mdot'/mdot})_{\text{air}}-1$ $\sim \text{sqrt}(4/5)-1 \sim -0.1$

Combustion Instability Control Strategy

Objective: Suppress combustion thermo-acoustic instabilities when they occur

How do we deal with combustor instabilities?

- 1. Smart design
- 2. Modulate air to get out-of-phase cancellation
- 3. Fuel-modulation to get out-of-phase cancellation

However...

Method 1 is preferred, but we're not sure it's enough.

Method 2 requires lots of actuation power input and bulk.

Method 2 also may induce diffuser flow separation due to flow perturbation.

Method 3 requires the least actuation power and bulk and produces the most energy change.

Why is instability control so difficult?

Our Technical Challenges

- Combustor dynamics largely unmodeled
- Liquid fuel introduces additional unmodeled dynamics including time delay (atomization, vaporization, ...)
- Actuation system enough bandwidth and authority, not just valve (also feedline, injection, ...)
- Experimental testbed for actuation, feedline dynamics required
- Simplified models needed for control design evaluation
- Control methods required to:
 - identify instability
 - suppress instability in presence of large time delay, substantial noise, unmodeled dynamics

Active Combustion Control of Instability Spring 2004

Large amplitude, low-frequency instability suppressed by 90%

Liquid-fueled combustor rig emulates engine observed instability behavior at engine pressures, temperatures, flows

High-frequency, low-amplitude instability is identified, while still small, and suppressed almost to the noise floor.

Our Approach: Active Combustion Control Via Fuel Modulation

High-frequency fuel valve

Fuel delivery system model and hardware

Realistic Engine Hardware Instability Testing

Test Rig Designed to Replicate Real Instability at Engine Conditions

- Acoustic Analyses Guided Dimensions
- Real Engine Lengths, Area Changes, & Flows
- Real Engine Components
- Instrumentation for steady-state (P,T), dynamic pressure, single-point emissions

Single-Nozzle Combustor for Instability Research

Combustion Instability Control Testing

Test Rig Designed to Replicate Real Instability at Engine Conditions

Research Combustor Rig at UTRC

Comparison of Engine and Rig amplitude spectra of combustor internal pressure

Geometry mod. produced substantial change in instability behavior

Alternate geometry ("280 Hz")

Spool sections inserted downstream of the pre-diffuser

- dramatically changes the frequency and amplitude of the instability
- peak amplitude and resonant frequency varied considerably with operating condition and f/a
 - 2psia to 11psia, 200Hz to 310Hz

0.015 0.02 0.025 0.03

Time, sec

Glenn Research Center

0.035 0.04

-10

0.005

0.01

Combustion Dynamics Modeling

Reduced-order oscillator models

Run fast to allow parametric studies in support of control system development

Simplified Quasi-1D dynamic models

Allow physics-based control method validation

Results from NASA Sectored-1D Model of LPP Combustor Rig

Detailed, physics-based dynamic models

Fundamental understanding of combustor dynamics to aid passive, active instability suppression

Penn State Injector Response Model Plot

<u>Sectored 1-D Combustion Instability Model – D. Paxson</u>

High-Frequency Configuration

Low-Frequency Configuration

Test Rig Data

Simulation Data

Predicted Mid-Length Instability - Sectored 1-D Model

Mid-Frequency Configuration

Simulation Data

Experimental Data

High-Bandwidth Fuel Actuator Characterization Testing

Valve, Feed-system Characterization Rig at NASA GRC

High-Bandwidth Fuel Actuator

GaTech highresponse fuel valve in characterization rig in CE7A

Steady-State Operational Data

Frequency Response Dynamic Characterization Data

Fuel Delivery System Dynamic Response

Stroboscopic Image of Dynamic Fuel Injection (courtesy UTRC)

High-Bandwidth Fuel Actuator

Combustor Pressure Response to Fuel Modulation

300Hz 600Hz

Control Strategies to Deal with Combustion Instability

Objective

Perturb the fuel with the right amplitude and at the right phase to cancel the instability

Challenges

Control action delay, noise, unknown disturbances

Approach

- Use reduced-order models for development
- Use simplified physics-based model for validation before test

Control methods

- Empirical: Adaptive phase shifting based on achieved cancellation
- Model-based: Set the proper phase for cancellation based on a model of the predicted instability and disturbances

Adaptive phase shifting control:

"Adaptive Sliding Phasor Averaged Control" – G. Kopasakis

Model-Based Control:

"Multi-Scale Predictive Damper Control" - D.K. Le

Combustion Instability Control Test Implementation

- Control methods implemented in real-time computer
- Rig operated at nominal engine temperature and pressure (P3=175psia, T3=775degF)
- 530Hz resonant frequency related to observed engine instability

Predicted Instability Control Results: Sectored 1-D Model

Baseline, high-frequency configuration

Extended, low-frequency configuration

Test Results (testing done at UTRC, late 2002):

First successful demonstration of combustion instability suppression in a realistic aero-engine environment

-- NASA Team Honor Award--

Adaptive phase-shifting control method

Open-loop Adaptive Phase-Shift Control 0.3 0.25 Amplitude, psi 0.05 100 200 300 400 500 600 700 800 900 1000 Frequency, Hz

Model-based control method

Experimental Pressure Amplitude Spectra Plots Showing Effects of Active Combustion Control Over Combustion Instability Peak Pressures

Test Results (testing done at NASA, 2004):

Over 90% reduction in pressure spectral peak for large, low-

frequency instability

Uncontrolled –vs- Controlled Instability Pressure

Summary

- Combustion instability control successfully demonstrated in a realistic aircraft engine environment for two different combustor configurations
- In-house capability for actuator design, modeling methods, control methods, combustor dynamics testing
- Technology Transfer:
 - Publications:
 - 10 NASA-authored / co-authored conference papers and TM's
 - Sponsored ~20 university-authored papers and journal articles
 - 3 invited presentations to industry / academia groups
 - 2 contractor reports
 - 7 R&T Reports articles
 - AIAA book chapter co-authored by Pratt and NASA
 - Application of technology:
 - GE considering NASA models and control methods for use with an advanced combustor design (Prop 21)

Future Plans

- Integrate controls, combustor design, sensor, and actuator technologies to provide:
 - Intelligent fuel/air management system with temporal and spatial fuel modulation for
 - Instability suppression
 - Pattern factor control
 - Emissions minimization
 - to enable...
 - Combustor with extremely low emissions throughout the engine operating envelope

